顶部
当前位置:首页  技术流  技术文章 锂离子
关键字:
一张图读懂“压实密度”和“涂布厚度”对锂离子电池功率性能的影响

一张图读懂“压实密度”和“涂布厚度”对锂离子电池功率性能的影响

对于锂离子电池而言最重要的两个指标就是能量密度和功率密度,能量密度指的是锂离子电池单位体积或者重量所存储的能量多少,而功率密度则指的是单位重量或者体积能够输出的功率大小。

Nature Energy: 通过镧和铝掺杂使锂离子电池中钴酸锂接近理论比容量

Nature Energy: 通过镧和铝掺杂使锂离子电池中钴酸锂接近理论比容量

由于其高能量密度,锂离子电池(LIBs)已成为快速增长的能量存储技术,在手机,便携式电子和电动汽车中有着广泛的应用。

Energ. Environ. Sci: 全固态柔性平面型锂离子微型电容器

Energ. Environ. Sci: 全固态柔性平面型锂离子微型电容器

锂离子电容器(LICs)将锂离子电池的高能量密度和超级电容器的高功率密度的优点结合起来。然而,所报道的LICs均是通过在两个电极基底之间夹入聚合物隔膜或固态电解质,而非平面几何构型器件。

粘结剂在锂离子电池衰降中的扮演的角色

粘结剂在锂离子电池衰降中的扮演的角色

关于锂离子电池衰降机理的研究多是集中在正负极材料上,例如许多研究表明活性物质损失、内阻增加等因素是造成锂离子电池衰降的主要因素,而对于粘结剂在锂离子电池衰降过程中所起到的作用研究还比较少。

中科院化学所JACS:离子导体层减弱正极-固态电解质的界面电位,增强固态电池的界面动力学

中科院化学所JACS:离子导体层减弱正极-固态电解质的界面电位,增强固态电池的界面动力学

锂离子电池的电解液是液态的,容易发生泄漏、分解和变质等问题,导致电池发生爆炸、泄漏和失效等问题。因此开发不含液态电解质的固态电池就变得尤为重要。

中科院化学所Adv. Mater.:低温生长全碳石墨炔改进硅负极锂离子存储性能

中科院化学所Adv. Mater.:低温生长全碳石墨炔改进硅负极锂离子存储性能

目前,对于减少Si负极的体积膨胀对电极材料的影响,提高Si负极复合材料中的空隙体积,缓解容量急剧降低,提高Si负极电池的循环寿命等问题,是该领域亟待解决的重大问题。

锂离子 存储 性能 2018-06-05
中科大Adv. Mater. :直接激光写入石墨烯用于微柔性超高功率超级电容器

中科大Adv. Mater. :直接激光写入石墨烯用于微柔性超高功率超级电容器

高性能柔性储能器件的研究对于柔性、可穿戴电子器件的发展尤为重要。目前主要依赖于薄膜锂离子电池(LTF)、微电池和微超电容器(MSC)。固态的MSCs可以和其他电子器件组装。

3D双螺旋结构锂离子电池引领高比能电池设计新潮流!

3D双螺旋结构锂离子电池引领高比能电池设计新潮流!

锂离子电池在1991年诞生以来结构基本上没有发生大的改变,从基本结构上来讲现有的锂离子电池是一种二维结构,即由二维结构的正负极极片、隔膜通过卷绕工艺或者叠片工艺组装完成。

Nano Lett.:通过调控碳材料的化学环境获得具有“高压、高能、高功、高寿命”的新型全碳锂离子电容器

Nano Lett.:通过调控碳材料的化学环境获得具有“高压、高能、高功、高寿命”的新型全碳锂离子电容器

锂离子电容器(LIC)综合了锂离子电池和超级电容器的特点,有望获得良好的功率密度、能量密度和循环寿命,具有极大应用前景。

ACS Nano:在非腐蚀性电解液中,纳米簇Mg3Bi2阳极的高电压镁离子电池研究

ACS Nano:在非腐蚀性电解液中,纳米簇Mg3Bi2阳极的高电压镁离子电池研究

二次电池在新能源领域的应用,具有重要的战略意义。锂离子电池是主要的研究方向。但锂离子电池正在面临开发成本高、应用环境限制条件多、比容量达不到生产需求等困难。因此,开发新型的离子电池就变得非常重要。

大幅提升续航能力 黑科技碳纳米管登场

大幅提升续航能力 黑科技碳纳米管登场

日前有国外媒体报道称,法国NAWA技术公司正在研发一种基于纳米技术打造的超级电容——碳纳米管,其最大特点是在保证电动车动力电池性能不变的情况下,较锂离子电池组减重30%。

ACS Nano:通过自驱动静电纺丝系统制备锂离子电池硅-碳负极材料

ACS Nano:通过自驱动静电纺丝系统制备锂离子电池硅-碳负极材料

自1991年索尼首次商业化以来,锂离子电池(LIBs)由于其能量转换效率高,循环寿命长,能量密度高等特点成为了能量存储领域的支柱,近年来对于锂离子电池的研究方兴未艾。