顶部
当前位置:首页  技术流  技术文章 电池
关键字:
如何改变锂资源短缺的现状?

如何改变锂资源短缺的现状?

近些年,随着电动汽车和便携式电子产品的普及,锂离子市场迅速膨胀。然而,锂的供给非常有限,如杯水车薪,无法满足日益膨胀的市场需求。

北理工&清华大学: 将硝酸锂融入碳酸盐电解液用于高电压锂金属电池

北理工&清华大学: 将硝酸锂融入碳酸盐电解液用于高电压锂金属电池

通常,碳酸盐电解液常用于高压电池体系中,其具有比醚类电解液更宽的电化学窗口以及更好的高温性能。

探究富锂材料电压衰减的根源

探究富锂材料电压衰减的根源

富锂材料的比容量可达250mAh/g以上,远高于目前的三元材料,然而富锂材料在循环过程中面临着持续的电压平台衰降,这不仅仅会造成电池比能量的降低,还会影响电池管理系统BMS的正常运行。

Adv Energy Mater:超轻三维炭集流体:构建稳定高能量密度全炭双离子电池

Adv Energy Mater:超轻三维炭集流体:构建稳定高能量密度全炭双离子电池

双离子(DIB)电池是一种正负极活性材料均可以采用石墨的非常规电池,不仅具有高电压窗口,并且可以通过调控阴阳离子尺寸控制嵌入正负极石墨电极的状态,获得性能可调控,电压窗口可调控的低成本储能电池。

Adv. Energy Mater. : 石墨化炭纳米笼作为具有高循环稳定性和高倍率性能的钾离子电池负极材料

Adv. Energy Mater. : 石墨化炭纳米笼作为具有高循环稳定性和高倍率性能的钾离子电池负极材料

设计具有层状结构、高稳定性的高石墨化度炭材料,以缓冲其在储钾过程中的大层间变化成为石墨材料应用于钾离子电池面临的主要挑战。

观点:快充有前置条件 锂电池原理上不能快充

观点:快充有前置条件 锂电池原理上不能快充

电动汽车电能补充,比燃油车加油速度太慢,是一个客观的短板。笔者的观点,工程技术(工艺)必须要找原理是正确的的方案,再整合好资源(条件),不要总是用原理上不正确的想法,去尝试、再尝试。

Adv. Mater. : 氧空位/表面调控超薄钴酸镍纳米片作为高能量锌离子电池正极

Adv. Mater. : 氧空位/表面调控超薄钴酸镍纳米片作为高能量锌离子电池正极

为了适应电动汽车和各种智能设备的快速发展,具有良好安全性、高功率/能量密度的新型先进能量存储装置(ESD)成为研究的热点。

清华大学何向明:锂离子电池安全可靠性评估探索

清华大学何向明:锂离子电池安全可靠性评估探索

清华大学核能与新能源技术研究院新型能源与材料化学研究室主任何向明主要就动力电池的安全可靠性展开分析。

电源模块外围电容如何选型?

电源模块外围电容如何选型?

随着科技时代的发展,模块电源越来越受市场青睐,在使用模块电源的时候,应该如何提高模块电源的稳定性和可靠性呢?

汽车动力电池技术路线图——固态风口,核能终结!

汽车动力电池技术路线图——固态风口,核能终结!

中国制造 2025 要求 2020 年 300 Wh/Kg,2025 年 400 Wh/Kg,目前量产动力电池单体能量密度在 230±20 Wh/Kg。

Adv. Energy Mater.: 功能性聚合物改善电极与固态电解质界面问题

Adv. Energy Mater.: 功能性聚合物改善电极与固态电解质界面问题

全固态电池具有能源密度高,安全性能好等优点,有望应用于下一代高能量密度储能装置。但其仍然存在一些问题, 如电极材料体积变化大、电极-电解质界面电阻高、活性材料负载量低、循环稳定性差、安全性能低等。

Nature Energy:用于安全锂离子和锂金属电池的高盐溶比不易燃电解液

Nature Energy:用于安全锂离子和锂金属电池的高盐溶比不易燃电解液

不易燃的电解液可以从根本上消除着火危险并提高电池安全性,但是由于负极表面的强催化活性,它们与负极材料,尤其是石墨负极的相容性仍然是一个障碍。