顶部
当前位置:首页  技术流  技术文章 动力电池及管理系统
关键字:
CT技术详解三洋18650电池循环寿命衰降原因

CT技术详解三洋18650电池循环寿命衰降原因

近日,欧洲委员会联合研究中心的A. Pfrang(第一作者)和E. Figgemeier(通讯作者)利用CT手段对锂离子电池在循环过程中的衰降机理进行了研究。

我国锂离子电池三元镍钴锰正极材料存在的问题与挑战

我国锂离子电池三元镍钴锰正极材料存在的问题与挑战

目前锂离子电池的主要发展方向为高能量和高功率,同时这也是电子产品终端不断升级换代以及新能源电动汽车行业发展壮大的必然要求。

解析BMS关键技术

解析BMS关键技术

一个典型的动力电池管理系统具体都需要关注哪些功能呢?

全固态电池真的安全吗?看看丰田的研究

全固态电池真的安全吗?看看丰田的研究

相较含有易燃电解液的锂离子电池,全固态电池使用非易燃的固态电解质,燃烧产热量低,一直被认为是更为安全的下一代电池。

动力电池pack防爆阀结构设计 双通道快速泄压排气更安全

动力电池pack防爆阀结构设计 双通道快速泄压排气更安全

我们研制了一种新型防水透气防爆阀,用于新能源汽车动力电池系统,来维持箱体内外压力平衡,预防剧烈爆破、减少爆炸产生的损伤。

锂-氧电池取得技术突破 实现四电子转化及库仑效率近100%

锂-氧电池取得技术突破 实现四电子转化及库仑效率近100%

据外媒报道,加拿大滑铁卢大学Linda Nazar教授宣布,其研究团队首次实现四电子转换,该技术将实现锂-氧电池(lithium-oxygen,Li-O2)的电子存储容量翻番。

锂电池失效的分类和失效的原因

锂电池失效的分类和失效的原因

锂离子电池在生产、运输、使用过程中会出现某些失效现象。而且单一电池失效之后会影响整个电池组的性能和可靠性,甚至会导致电池组停止工作或其他安全问题。

如何改变锂资源短缺的现状?

如何改变锂资源短缺的现状?

近些年,随着电动汽车和便携式电子产品的普及,锂离子市场迅速膨胀。然而,锂的供给非常有限,如杯水车薪,无法满足日益膨胀的市场需求。

高镍三元正极材料的技术痛点!

高镍三元正极材料的技术痛点!

高镍三元正极材料的容量主要来自Ni2+/Ni4+氧化还原,所以镍含量越高,材料的容量也越大。但是Ni含量升高后,高镍三元正极材料会带来一系列棘手的技术问题。

北理工&清华大学: 将硝酸锂融入碳酸盐电解液用于高电压锂金属电池

北理工&清华大学: 将硝酸锂融入碳酸盐电解液用于高电压锂金属电池

通常,碳酸盐电解液常用于高压电池体系中,其具有比醚类电解液更宽的电化学窗口以及更好的高温性能。

探究富锂材料电压衰减的根源

探究富锂材料电压衰减的根源

富锂材料的比容量可达250mAh/g以上,远高于目前的三元材料,然而富锂材料在循环过程中面临着持续的电压平台衰降,这不仅仅会造成电池比能量的降低,还会影响电池管理系统BMS的正常运行。

东芝动力电池产品SCiBTM的NTO负极材料研究

东芝动力电池产品SCiBTM的NTO负极材料研究

2017年东芝公司推出了新一代的动力电池产品SCiBTM,采用铌钛氧化合物NTO作为负极,NTO化合物的体积比容量是石墨负极的两倍,显著提升了电池的性能,公司计划在2020年将该产品推向市场。